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ASYMPTOTIC SPECTRAL ANALYSIS OF CROSS-PRODUCT MATRICES

by

G. S. Watson
Department of Statistics
PRINCETON UNIVERSITY

ABSTRACT
, Let x be a random vector in RY and M = n1
z xixi' be an estimator of M = Exx' with spectral
1l

form ZAij. An expository account is given of the

estimation of Aj and Pj from the eigenvalues and

F and vectors of M when n is large. This includes
a derivation of the basic formulae using a complex

variable method in the book by Kato (1980) and a

contrasting matrix method. Several extensions are

indicated.
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P ASYMPTOTIC SPECTRAL ANALYSIS OF CROSS~PRODUCT MATRICES

jf
i G. 8. Watson
} Princeton University

' 1. roduction
-

3 T. W. Anderson (1963) derived the asymptotic distribution of the

eigenvalues and vectors of the covariance matrix of a sample from a
Gaussian distribution. Davis (1977) took his basic method and used
it to get some results for the non-Gaussian case. The non-Gaussian
case is of interest either because one wants to study the sensitivity
of methods to deviations from Gaussianity - see e.g. Muirhead (1982)
= or because one has to deal with other distributions. For exsmple
the distribution of the random vector might be entirely restricted

to some manifold embedded in RY like the surface of the un:l.t.

sphere or an hyperboloid of toutic.m; the cases of interest to us.

" Kim (1978) at the suggestion of R. J. W. Beran, used results

from the book by Kato (1976, 1980) on the perturbation theory of

linear operators to find the asymptotic distribution of the eigen- 3
S

- ' ‘

values of the matrix M = n 1y ’1‘1' where the x, ° are independently ~—
drewn from a certsin distribution on the surface @ , Of the unit o
spbere 1n BY . Tyler (1979, 1981) also used Kato's method to get o
ngp

results in classical multivariate anslysis. But the technique is not ~—

well-known, nor immediately evident from Kato's book.
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Kato's method calls upon Cauchy's Theorem in Complex Variable
Theory. Specifically consider the integral of (s - co)’ anti-
clockvise around a simple closed curve C in the complex plane vhich

does not go through 24
- g)P
[ (‘ ‘o) dz

vhere p is an integer. Unless p = =1, it is slwvays zero. When
P = -1, it is zero 1f z; is outside C and 2ri where z, is inside c.

The techniques and formulae below have many possible applications.
Some are given in Watson (1982a) but most remain to be exploited. 1In
the next section Kato's method is explained for symmetric non-random

satrices and then applied in Section 3 to covariance matrices.

The key formulae in Section 2 and the results of Section 3 have
of course been obtained before by direct matrix methods -
- though they.u'c hard to justify. The Kato method not
only gives a better insight but is esasier to do and to extend, e.g.

to provide asymptotic expansions.

2. The key to Kato

T, and T, sre resl symetric q x q matrices and x 1s & small
Teal nuaber

™(x) = To + xT; 2.1)

can be thought of as a linear perturdation of ‘l‘o. Lst the spectral
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:: Tepresentation of the matrix T, be
£ .
) -
-‘ I, = i "3’3 » T<Q (2.2)
vhere
Ays oses A are distinct real numbers,
* )
' .
T e
rank Pj = trace P’ = qj. { qj = q
Thus A 4 is an eigenvalue of 'ro that is repeated q 5 times. The ';
invariant subspace \7j associated with A y has dimengion qj and P 3 ’
projects orthogonally onto Vj vhose direct sum is RZ. ]
The matrix T(x) may have q distinct eigenvalues but we would \ 3
expect these to fall into r clusters about A;, «c.,h  &nd to condense '
on A:I.’ ceey At as x + 0. Equally the eigenvectors of T(x) should ..
.-1ead us to the eigen subspaces vj as x+ 0. To show how this "‘
i L
happens, define the resolvent of T,, Ry(%) as i
- %
'o(‘) - (To - dq) 1 (2.4) =
where  is a complex number. By (2.2) we may write i
v
g A - = . e
B = o -07, (2.5)
Observe that T, and R,({) commute.
vy
If C is sny contour in the complex plane which does not go 5
through any Aj. which are points on the real axis, Csuchy's Theorem
‘and (2.5) tmply that
'y
Tl (Rdg = 3 P : :
i J o Mo sec 3 (2.6)
vhere the sum is over the projectors Pj associated with eigenvaluas Aj
inside C. The integral of s mstrix is the mstrix of integrals. Similarly ~.
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We observe that the trace of (2.6) gives the sum of the dimensions
of the eigen subspaces associated with 11 vithin C. Similarly the
trace of (2.7) gives the sum of the eigen values (times their

multiplicities) within C.
We now consider the resolvent of I(x).
RxD) = (T -7 = R+ R (2.8)

1f ve apply the results of the previous paragraph to R(x,T), we will
get information about the eigen values A(T(x)) and projectors P(T(x)),
of T(x). As x + 0, we would expect the values of A(T(x)) to condense

on the eigen values A 1 of '.l'o

To obtain the required formulse, we meed to expand (2.8) as a

power series. For a q x q matrix A,

(, + ) - 1, -m4 z2A2 - ... | (2.9)

vhere the series is absolutely couvergent provided [x| [[A || < 1,
where ||A] 1s a norm of A. Thus we can say that for x sufficiently
small,

(. + ! - 1 -+ 0(=2) . (2.10)

Applying (2.10) to (2.8), we have, as |x| = O,
R(x,0) = Rg(D) = x R(DTRH(D) + 0. (2.11)

Consider now the analogue of (2.6) when cj 4s a contour which

cncloiu only the eigen value lj. Then

-
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+ 0(x?) (2.12) o

ﬁe first term on the right hand side (r.h.s.) of (2.12) is Pj. ‘

To find the second term, we observe that, if we use (2.5) twice, -":

1

T r rkrlr

ROTRE = I I G060

' 4 Pkl'l?k (rk'rlrl + P '1' Pk) 1 1
= I - 4+ I = ( — - TT) (2.13)
k=1 (Ak-;) k<t L "k At At

The contour integral of the first term on the r.h.s. of (2.13) 4s zero.

We get contributions from the second term when k or £ equal j and they

add to the oymetric matrix

'r P, +P ‘1' P ; )' |
z —1—-1-— 2.14
Obsérvc, for later use, that this matrix has a zero trace because -‘J
rjrk is pull. Thus ,
1 P T,P 4P T P '
- m-[ R(x, e = Pytx I —x-‘l—-};—— + 0(x?) (2.15) hd
j 3 b -

is the analogue of (2.6).

* The analogue of (2.7) is cbtained by integrating T(x)R(x,t) which
ssy, using (2.1) and (2.11), be written as

TIRCE, ) = TgRo(D) + HTRG(D) = TR(DTRG(D) + 0. (2.36)

The integral of the first term on the r.h.s. of (2.16) is that in (2.7).
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To find the second and third terms we note that

TR = I G0 rp

t ‘k 'rrk
TORO(C) Ro(c) - (2.17)
1 -0’

Ak TP+1P‘I'1Pk

1 1
-+ ) 4 (— - =), 2.18
ket Ogh) e W (218

vhere wve have used (2.2) and (2.13). Thus we find that

BT 40P TP
—I—I T(x)R(x,0)dE = AP 4x(T,P, + I e W Ak,
2ni cj j j j k*j Aj - Ak
2
+ O(‘ ) . (2-19)

Observe that the trace of the second ternz in the coefficient of x

18 zero. (2.19) is the analogue of (2.7).

In the applications we bhave in mind T(x) will have q distinct
eigenvalues Al(x) s soey Aq(x) and (orthonormsl) eigenvectors

vl(x). ceey vq(x) so that

q
(x) = iki(z\:)vi(x)vi(x)' (2.20)

4s the lpo'ctul form for T(x). By using the reasoning that led to
(2.6) and (2.7) we may then evaluate the 1.h.s. ® of (2.15) and (2.19).
Thus

'i%? ! R(x,0dE = I v, (0v, (0’ (2.21)
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( 1 ' v
o 3ol Ic T(x)R(x,g)d; = £ li(x)vi(x)vi(x)' (2.22) :!:
: 3 R
:i: . where both sums are over i such that 11(:) are points inside . :
the contour cj.
Since trace vi(z)vi(x)' = vi'(x)vi(x) = 1, taking the o
. trace of both sides of (2.15) and using (2.21) yields _..'.J
: *
2 # A (x) fnside C, = q, + 0¢?) (2.23)
for any contour (::l enclosing A 4 As x + 0, one could use s.__.ler N
and smaller contours. Hence as x + 0, the eigenvalues of T(x) form
clusters of qj roots about lj (=1, ..., ¥) vhich condense upon Aj.
; If we do not take the trace of (2.15) and write :
ij = I v()v(x)° (2.24)
Ai(x)cc g
: J -
then (2.15) may be written as
X BT.P 4P T P s
P, =« p,4x t LI ALKk 4, o2 (2.25)

J 17 Ty Mok

Taking the trace of (2.19) yields

' 2 ok

+ .

% A*(x) vithin (:j - qj‘j x trace II?J + 0(x") (2 .26)

< . e

90 dividing through by q:| snd calling the 1l.h.s. A,, the arithmetic T
mean of the jd‘ cluster, wve have
.
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A, = A, +-= trace TP, + 0(:2) (2.27)
3 3 q 13
The formulae (2.25) and (2.27) are ideal for statistical applic-
ations, az vill be seen in the next section. We close this section
by observing that there is no problem except complexity in getting
highe‘r order approximations - one merely takes higher order terus -

in (2.10). For example, the coefficient of xz in R(x1 ) 18 R.T.R.T.R

01707170
80 using (2.5) and partial fraction expansions the contour integral
say be evaluated to give a lengthy formula. One then finds that

(2.23) may be improved to
' 3
# Ai(x) inside (:j - qj + 0(x”) (2.28)

In Watson (1982a) explicit results are given when r = 2.

3. large sample theory of symmetric cross-product matrices

Let x be a random vector in IRY with components xl. xz, o x3
and suppose that 'kixjxkx" exists for all &, J, k, =1, .., q.
Let x' denote the transpose of x. Call Exx' = E[xixj] =M, a symn-
etric q x q matrix with .lpcctn.l form

4

E Iy (3.1)

1¢£ Zys cos X BTG independent copies of x, define

- B
M = z z‘.x'1 (3.2)

B 1
Then “n <+ M by, the law of large numbers and by the multivariate
central limit theorem

e e e e e e e
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The q(q+l1)/2 functionally independent elements of the symmetric
matrix G are jointly Gaussian with zero means and a covariance

matrix V whose elenents are
it - i)Y, 1 <5, k< 2. (3.4)

To use the results of Section 2, wve may write

M o= n+a 2 @2 o) (3.5)
instead of
™(x) = '.I.'0 + x ‘Il
-1/2

From (3.3), 'rl corresponds_ to G, xton » and M to T.. Provided

no A 4 in (3.1) is zero, the matrix Hn will, wvith probability onme,

bave distinct eigenvalues - Okamoto (1973). If say 11 = 0, B(l’lx) (Plx) !

is a matrix of zeros so that, taking the trace, E llrlx II2 = 0. Thus

Plx is a null vector and Mn vill have q, zero roots and the data will

" determine the eigen subspace Vl exactly. This case has little interest

80 ve assume that all the A g > 0.

The matrix Hn will be used to estimate the Aj and P, J=1, ..., T.

Combining (3.5) with (2.24), (2.25) and (2.27), we have the key results:

fOl' j - 1. ooey t.

' - PGP, + PGP

/2 . _ d 1" 4k
2" Ry =Py —»'gj Y gs.s)
auz (Tj - lj) 4,1 txace Gl’j . (3.7)

Qj'
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The r.h.s. ® of (3.6) and (3.7) are linear in the Gsussian
e ’
- matrix G so that the 1.h.s. ® have asymptotically Gsussian distrib-
! utions wvith zero means and variances and covariances that depend
upon the covariance matrix V of G.
s (3.7) is univariate and so easy to understand, e.g. it leads to
a normal confidence interval for A,, although we will see that one -
will do better with a transformation. (3.6) describes the difference _._*
"  between estimated and true projectors and needs further simplification. - 4
: Using the Euclidean matrix morm ( ||A "2 = trace AA'),
‘ . trace P.GP. G -
® ollf -2, 112 4>2 | AL (3.8) o]
; Again, one might examine the different effects of fj and Pj on _.'j
ﬁ' vectors. For example, if v ¢ vj, "
- n lz(P v = P,v) - 2 Ak_ 3.9 i

==

F R b 7k -9

;_? so

v*'GP, Gv o
N - 2 4 k ‘w
— - —— »

e BRI AR AY b{J . (3.10) i
More fundamentally if 91 is the subspace onto which i’ projects, e
;‘. - '_1 will be "close” to vj if cos 0 = v'v 15 alwvays large vhen v ¢ V i

3 o
nﬁsv’. flvll =1, |Ivll =1. Thus we should sesk the stationary .

L
o

A e 3 &
TUTRY e,
S Qe

values of (Pju)'(fjv). given “Pju | = Ilfjv | =1, £.0., we should

-
consider

h'tifjv - Ou'rsu - n'l‘;jv
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vhere O and ¢ are Lagrangian sultipliers. Hence

R CRCRAX IR

‘o R TR AN

R et T
. e

’3’,1 eP,u = o, } - =

- L3 - ou) '.’_'

Bypju- v = 0, : b=

so that —‘j
6 = ¢ = gtationary value of (Pju)'(fjv)

= C, say . ._.é

Hence the equations (3.11) will only have a solution if
<p P ij |

- - = 0 (3.12) |

P, B 3

This oquat:lon for C may be reduced to ".*
nely

| », f P, - c2 r, I'- o (3.13) 1

oy

2 o

" which has qj non-zero roots c‘ « If, however, (3.6) is used, one =~

finds eventually that ‘all the c‘z are unity. Watson (1982a) deals

with the case where r =2 and shows, by taking the next term in the

expansions in Section 2, that n(l - cf) have asymptotic distrib-. ~

utions. It is conjectured that for any r the asymptotic joint !
. f‘,‘}.]
distribution of n(l-cl), eeey B(1l = cq ) 1s the joint distribution N
| 3 - oy
A of the non-zero eigenvilues of —y
' =]
PGP, GP . e
S - 2 (3.14) o
v 3 0y -2 oy
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Some of the above results become sasier to understand if we

write, since I‘l - Pl + .00 ¢+ Py,

One of the reasons results become simpler for the Gaussian is

that there Yys eees I 8TE independent. Since Exx' =M = "_1’3
]

By, = 0, ¥k Eyy' = AP, }

, , (3.16)
!y‘, ,k‘ = 0, (t¥4%), t’j ’j - quj
Thus (3.7) may be rewritten as
1/2 B
1/2 5 _ a 1 v o
i CE T B y trace ( & 121 Y4aT31 = NPy )
1/2 n
« B _ (1 ' -
5 (3 121 Yis Tga = X49) (3.17)

so that by (3.16) and the Central Limit Theorem
- where Gq(u.!) stands for the Gaussian distribution in q dimensions ~

vith mean vector u and covariance matrix I. Similarly (3.6) can 1

be written as ~-;l-:
4 : o
5 AR o
2 V2 3 -1/2 § Te1¥41 * Y44%ka e
n -P)~a - (3.19)
3 3 | 3 ;Z; Jj Ay =& o
I -
2 3
;:,“ - ’
‘ o
E B -2
o <
| a PR e a e 5 Aen om I R U S U S W e B e e e A it e A arazd
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If&x - cq(o.n). Yys s cees y? are independent and
-1 - 2 - 2 »
L yj ijj xqj so that var(ysyj) lquj. Then (3.18) reads:

12 5 2
L o2 @, - 2 —> 60, 2379

Hence / . .
1/2 -~

giving the variance stabilizing transformation. Moreover in this

1/2 (Tj =) or al/2 (1og(‘ijlxj) - 1) are

asymptotically independent, a simplifying result which is not true

.Gauuian case the n

‘dn general. Under no circumstances could it be expected that the

r
ij would be independent since ) f, = I,

With this introduction, the compact paper by Tyler (1981) may
be read for more details on ij' He slso gives tests.
special case of r = 2 gnd distributions restricted to nq, Watson (1982a).
1f an additional assumption is made that the

distribution of x depends only upon "’1 s eces "7," more results
may be derived - see Watson 1982b).

4. Direct approach to large sample theory of cross-product matrices.

‘!Iudgcnvalmofx‘mthmuio!

by, -a1] = |n§|-u+%rll -0 (4.1)

1
Where, as ia Section 3, M= LA, T) * Emn - M). Suppose ortho-
1 B

mormal efgenvectors are selected to span each of the invariant

VPP D M P PP S P e et e et PRSP PO U N N I D W

E

= "l




subspaces vj and arranged as column vectors to form a q x q
orthogonal matrix H. Lat the first 9 colums correspond to vl.

the next @ columns to '2' etc., and write it in partitioned form
B = [ll, seey .rl (4.2)

Then since H'H = HE' = I‘,\nhvc

WE, - O, BE, = I,

ln'+...+nrn; - I

1 1 q » (‘03)

l.n; - P..l-l, eoeyg T

BI'ME = D(Ajlqj) ’ (4.4)

8 matrix partitioned so all r® gubmatrices are szero except for the

sultiples of identity matrices on the diagonal.

If H 1s applied to .(4.1), it takes the partitioned form.

(A,_ - ) 111611 + o712 n;_rlnj = 0 (4.5)
Since n * ®, we seek the 0(1) and 0(n 1/?) terms culy in the
ﬁm:lon of (4.5). Applying the formula

A C
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1s 0(n"l) and so megligible. Hence we may repeat the procedure to
find that equation (4.5) and hence (4.1) 1s, to this order

T -1/2
Y l(xj -2) I‘lj +2 U ETE| -0 (4.6)

This shows that the eigenvalues of !n, for large n, form clusters

about the r distinct roots ,‘j of M. Expanding the jth factor in

' (4.6) to O(n'll 2), wve only peed the product of the diagonal terms

and find the equation

q trace H!T.BH
o -n3a+ o 1/2 > A2l < o “.7)

1]
Since trace n:"l':lbll.1
qj roots of (4.7) tend to lj as n *+ * gnd the leading terms of the

polynomial (degree q J) equation for A are

trace ljlstl = trace rj'rl by (4.3) the

2. {qu + n1/2 trace rjrl}x“'l + eee = 0 (4.8)

so that 1f the roots of this equation are denoted by 2,

I\ e q}, + 02 trace ’371 » (4.9)

io we found in (3.27). . But cne cannot expect to obtain the roots
in the cluster for A from (4.7) (it gives them to be 13(4-1 times),
s +012 ¢race ?,T; (once)) becsuse when A £s within 232 o a
811 the terms in the matriz in (4.6) are of order 22, govever,

(b.i) does give the correct coefficient for Aq'l in (4.6).
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vhen A 18 the leading submatrix of (4.5), it is seen that BA.IC i
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Since the eigenvalues of Hn wvill 4n g-mul be distinct, the
spproximations made above are inadequate to discuss e.g. the joint

distribution of the eigenvalues in a cluster.

The following direct derivation of the analogue of (2.25)
c:'(3.6) is bharder to justify. UWrite

> = =1/2 oo/ o
Pj l’j +a A, A= @ (Pj Pj) | (4.10)
and, because the roots in the cluster are within n.l of Aj. set
- - .1/2 -
unrj (AJ 4+ C)Pj (4.11)
i.e.
o™+ o1/ 2’1’ (¢4 y + ot/ 2 « g+ oY/ zc) (1:1 + o/ 2
80 that the terms in n 12 yie1d the equation
’1’3 +MA = XJA-b 6?1
or.
(M- AJI)A -. -rlrj + G?j (4.12)

nu:u-zjx - k;;““- 3)!kooclutneou1d replace A by

A~ ij and still satisfy (4.12). Thus (4.12) is solved by

"sultiplying (4.12) by IQA, - 3)"1" and adding P,X so that

s - JJ(AJ -3 1’1;"1’3 + 21

Bovever, from (4.10) we see that A must be symmetric and this
deteraines X. Thus ' '
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1/2,2 Pk'l'lP + P rlrk
8 = o', -p) « J-ELA 11k (4.13)
i k;:l "

vhich is the desired result. However, without the results of

Section 3, (4.10) and (4.11) are merely intuitions.

S. Additional Remarks

(1) Suppose (81. ’1) for 4 = 1, ..., o are independent copies

‘of a pair of random vectors (x, ), x ¢ llq, ye RP. Define the

estimator of N = Exy’

N = n'liixy' (5.1)
2 1 171 °

and assume that the Central Limit Theorem holds so that

al/2 o -m 2o (5.2)

One may wish to estimate the singular values of N so one would find

" the non-gero eigenvalues of LR " or .a"n vhichever is the smaller.

But “.m (5‘2)’

BN VN4 2 2pn + w'm) (5.3)
80 that the previous theory is applicadble.
(44) Suppose that s ceery X 188 sample from one q dimensional
distridution, 11'. cocy x.' a sample from another distridution in p

and let M = n"‘tx‘xi'. M- -'1_ Iz *, :’;*'. Then we often need
to study the solutions of

0L -~y = 0 (5.4)
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Anderson (1958) gives examples and calls A and v the eigen
values and vectors of Hn in the metric of u.. To study them in
large samples we suppose that the Central Limit Theorem applies

in both cases so that as m, 0 + =

1/2
1/2

un~u+n" G,

(5.5)

u:wu*-l-n. Gs .

-1/2 Hn H.*.llz wvhich by (5.5) are

those of

-1/2 -1/2
2 ue~d

Gryua~1/2

w2 ¢ carv ) + o~/

q

o V200712 o 0 1/20, 112

~le
~ie

G) (I‘l -

-1/2
s~/ 2capga~Typea~1/2

'
wie

-1/2
un~1/ 201 gapa1/2 (5.6)

'
ol

If\nutn-cl.n-B.lvtthc.s>0udl-»-(s.s)huthefom

1/2

of a symmetric fixed matrix plus 2 ' times a symmetric Gaussian

matrix so that the earlier thodry is applicable.
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